
NASA CR-159142
-

Subroutines for
Out-of-Cure Solutions
of large Complex linear Systems

Elizabeth 1. Yip

Boeing Commercial Airplane Company
Seattle, Washington

(NASA-CR-159142) FORTRAN S U B R O U T I N E S FOR 180-14773
OUT-OF-CORE SOLUTIONS OF L A R G E COllFLEI
ZINEBR SYSTERS Final Report (Roeing
Commercial Airplane Co., Seattle) 42 p Onclas
HC A03/MP A01 CSCL 09B G3/61 46555

Prepared for
langley Research Center
under contract NAS1-15128

NASA
National Aeronautics and
Space Administration

November 1979

CONTENTS

1.0 SUMMARY . 1
2.0 INTRODUCTION . 2
3.0 NOMENCLATURE .. 4
4.0 DlSCUSSlON . 7

4.2 Remarks on FORTRAN Implementation of Algorithm 1 12
4.3 Numerical Stability of Algorithm I . 16
4.4 Coniprlrison of Algorithm 1 with Other Approaches 18
4.5 Algorithm I1 (Subroutine) 20
4.6 Remarks on FORTRAN Implementation of Algorithm 11 22
4.7 Numerical Stability of Algorithm I1 25

5.0 COMPUTER PROCRAM USAGE 25
5.1 Machine and Execution Environmcnt 28
5.2 Operating System ... 28
5.3 Timing . 28
5.4 Files and File Format . 28
5.5 Usa g . 28

Using Algorithm I (Subroutine ETCGP) . 28
Using Algorithm 11 (Subroutine ETCSM) 32
Using the Iterative Refinement Subroutine (ETCIT) 33

5.6 ErrorMessages . 34
Error Messages from ETCGP 34
Error Messages from ETCSM 34
Error Messages from ETCIT 34

5.7 Sample Problems .. 35
Sample Problem 1 . 35
Sample Problem 2 . 37

REFERENCES . 39

4.1 Algorithm 1 (Subroutine ETCGP) 7

5.5.1
5.5 2
5.5.3

5.6.1
5.6.’
5.6.3

5.7.1
5.7.2

iii

1 .O SUMMARY

This document describes the design and usage of two main subprograms using direct
methods to solve large linear complex systems of the form Ax = b, whose coefficient
matrices are too large to be stored in core. In the first main subprobram, the basic idea is
to reduce the matrix to an upper triangular matrix and subsequently solve the problem
by backward substitution. A row interchanging strategy called “tlireshold pivoti tg ” is
adopted to preserve numerical stabilitv and to minimize disk-transfers. This algorithm does
piof yield the usual LU factorization of some row permutation of the coefficient matrix.
Thc- r,-.cond main subprogram is designed for Linear systems with a certain sparse structure,
namely. the matrix can be written as B + D where B is a block-banded matrix, and D has
only a few columns of nonzeros. A variant of the Sherman-Momson updating formula is
employed in this case. The second main subprogram calls the first main subprogram to solve
B(x.y) = (b.u) where x,y are unknowns, b is the right-hand side of the linear system
(B $. D)x = b, and U is the nonzero columns of D.

2.0 INTRODUCTION

'This document describes the design and usage of two FORTRAN main subprogrms for the
C ' I X digital computer systems, namely subroutine ETCGP and subroutine ETCSM. These
subroutines were written as part of a research effort investigating unsteady transonic flow.
References 1 through 5 present a procedure for analyzing the flow about harnionically
oscillating airfoils and wings in the transonic regime. This procedure is based on mall per-
turbations. A solution is formulated using finite difference techniques which results in a
large set of simultaneous equations, written matrix forni as

?j.here A is a sparse coniples matrix of order equal to the number of mesh points. The
matrix h is a comples niatris with the number ofcoli:mns equal to the number of modes for
ivliicli presslire distributions are to be found. The mmix A may be of order 3.500 for a
pra;tical two-dimensional airfoil.

Numerical solutions to equation (1) were initially obta in4 using relaxation techniques.
Ihvever. for a significant range of practical values of hnach number and reduced frequency,
esperience showed that relasation technique*. applied to equation (1) failed to converge.
Tlie matrix A in equation (I does not possess any of well-known properties (e.€.. positive
de finiteness. diagonal dominance) which guaraiitee the convergence of relaxation methods.
However. the physical origin of equation (I) guarantees tlie existence of a unique solution.
Thus the obvious allerndive is a direct solution method, which assumes no properties of
tlir matrik X other tli;in existrncc of a unique solution for an equation of the form of (1)
when any arbitray matrix h is applid.

Oiit-of-core algorithms have been discussed in standard textbooks of numerical analysis
(e.g. Reference 6) . These algorithms are numerically as stable as the well-known regular
(-. t.itissian .-' eliniination, yet they are not designed for efficien! execution in modern day
coniputers. The physical origin of equation (1) makes '-blocking" of the i;:.itri\ A an
olwiotis and ;ittractive data structure. Yet esisting "blocked linear quation solvers" at best
;isclime non-singularity and the well-conditioning of the i-th diagonal suh-block at the i-th
blocked pi\ot;il step (e.g. Reference 7) . This property is unnatural and is not hiised on the
physics of thi. problem. Out basic rilporitlim does not require the matrix A to liave this
particular property. As stated i n tlie above paragraph. the only property of A i t assumes
is nun-singularity o f the matrix A . I t also takes into consideration numerical stability and
computational efficiency. Sections 43 and 44 discuss these advmtages in det;iil,

Tli: FOK'T'KAN subroutines JcscrihcJ Iiere are applicable t o both dense ;ind sparst' matriccs
tila!

form of equation (I), i n particul;ir i n the c;iw wlicn tlicrc is nu iiseful properties ot tlic
matr ix .A t o guarantee convergence of any iterative nielhotls. For c\aniple. subroiltine
ETC(;P ;is well ;IS the version for re:il niatrices) has Iwcn iisctl i n tIiI'tcrent rcsearc.11 and
prod tic t ion co ni 17 ut e r cod cs ;I t t I IC Boci ng ('(i ni pan y .

too large to he storel! i r ~ core. Thus they are iisefiil for solving any qu;ition ol' t l ic

2

Results of applying the routines of this document together with th program described in
reference 5 are presented in reference 4. The development ot the routines of this document
was in conjunction with work described in references 4,5, and 8.

The first step in developing the algorithm for solving equation (1) is to partition the
augmented matrix [AIB] into blocks so that it can be considered to have the following
structure :

A 1 2 - - AIS

A22' . A2S

ASS

Figure 1. - Data Structure

Each block is stored as a record in mass storaqe with the requirement that at least three
blocks can he held in core simultaneously, and the diagonal blocks are square blocks. The
mass storage used should be a random access file (called direct access file in the IBM nomen-
clature).

The methods used in both main subprograms are direct methods. In the first main sub-
program. the basic idea is to reduce the coefficient matrix to an upper triangular system.
In the second main subprogram. the coefficient matrix is assumed to have the for B + D,
where B is a block-handed matrix. and D is a matrix with only a few columns of nonzeros.
A variant of the Sherman-Morrison updating formula is employed.

Features of the two subprograms include options to
0

0

0

0

Solve more than one set of right-hand sides
Control the frequency of pivoting
Access the submoduli of the main subprograms
Take advantage of the block sparsity of the coefficient matrix.

In section 3.0 we shall list our symbols and nomenclatures. In section 4.0. we shall discuss
the algorithms in detail. analyze their numerical stabilities. remark on their FORTRAM
implenientation and compare our approaches with outer approaches outlined in the liter-
ature. In secion 5.0, we shall discuss in detail the usage of the two subprograms.

3

3.0 NOMENCLATURE

AT

Upper triangulur
matrix

Block profile

matrix

A is a matrix, the entry of the i-th row and j-th column is
denoted by ai, j

A is a matrix partitioned into blocks, the block in the i-th
block row and the j-th block column is denoted by Ai, j

The transpose of A

Matrix with all zeros below the diagonal

Matrix of the form:

(where the shaded area indicstes noli-zero entries)

4

Block-Banded

matrix

Mat ix of the form:

Threshol. $voting

and pivotal

tolerance

(Where the shaded area indicates non-zero entries)

Threshold pivoting is a row interchanging strategy controlled

by a pivotal tolerance parameter p. The p rarameter is a

real number such that 0 Q p Q 1 . If A = (ai, j) , and

ai, i 2 max

otherwise interchange rows i and m where In = max.
j > i

, then there is no row interchanging, j > ; l a d

Random Access file Multi-record mass storage inputloutput file which allows the

user to create, access and modify its records on a random

basis without regard for their physical positions or internal

structures. (They are called direct access files in IBM
nomenclature.)

Sherman-Morrison Updating Formula for A = B + UV T :

~ - l = B - 1 - B-IU (14 + VTB-IU)- 1 v T B -1

5

Matrix norms: IlAll = max. { f: I a ~ l }
1 J

Condition Number of a nonsingular matrix

m = 1, 2,oo

Growth (growth factor)
of a reduction reduction process

process

The largest absolute value of the numbers generated by the

6

4.0 DISCUSSION

In this section, we highlight the special features of our algorithms. In sections 4.1 t o 4.4,

we shall discuss Algorithm 1. which reduces the coefficient matrix to an upper triangular

niatris and solves the problem by backward substitution. Then we shall remark on
FORTRAN implementation and compare the efficiency of this algorithm with the ap-

proaches outlined by Bjorck and Dahquist (ref. 6). and Reid, (private communication).

In sections 4.5 and 4.7, we shall discuss Algorithm 11, which employs a variant of the

Sherman-Morrison updating formula. Then we shall remark on its FORTRAN implementa-

tion. and the numerical stability of our particular applicstion of the Sherman-Morrison

Lpdating formula.

4.1 ALGORITHM I (SUBROUTINE ETCGP)

For the convenience of discussion, we shall firstly assume the coefficient matrix A to be

dense. We shall show how the algorithm can be modified for a block-profile system.

We shall first illustrate the algorithm with a 3 x 3 block system, and assume no row inter-

changing is nccessary. In this case, the algorithm yields Crout's LU decomposition. The LU
factors can replace the original coefficient matrix A on disk. Assume. grapliically. A is

stored on disk as in the following figure.

Figure 2. -Original Matrix

In hie firsf block pivotal step, we form the LU factorization of A1 I , A1 1 = L l U l and

replace A I 1.AI2,A13.A21,A31 asin figure 3.

7

Figure 3. -After First Block Pivotal Step

Fori = 2,3, write L1 - lAli as Uli, and U1- 1 Ail as $1-

In the second blocl: pivotal step, replace A22 with A22 - % 1U12, the decompose the

resultant into its LU factors, and complete the rest of the second block pivotal step as
illustrated in fig. 4.

-
Ll"l u1 2

L2 I A22

L3 1 A32 A33

111)

u12 '13

(L2U2) L11(A23- L21'13)
A22 - L21U12

A33

Fiqure 4. -Second Block Pivotd Step

Write L2(A23-L21 UI 3) as UZ3, and U2(A32-L31 U12) as Ly. a In the Lhird pivotal step,

we rep1ace *33 with A33 - L3 1 u13 -L32 u23 and decomplse the resultant to its LU

factors. The third block pivotal step can be illustrated by fig. 5 .

Flu1 "12 '13

L2u2

L3 2
A33 -

'23

J

?"23 1
Figure 5.-Third Block Pivotal Step

8

Thus we have reduced the matrix A to an upper triangular matrix, and thus equation (1) can

be solved by backward substitution.

Now we shall explain our row interchanging strategy, which is commonly known as

tltreshold pivotitig. A real number p is chosen so the 0 Q p Q 1. We perform row inter-

changing only when Iaiiil < p * Max. Iajil .
j > i

Note that if p = 0, there is no row interchanging at all; if p = 1 , we have the regular row

interchanging. We shall illustrate the application of this row interchanging strategy to a

2 x 2 block system:

a3 2

Figure 6. -First Pivotal Step of a 2 x 2 Block System

In the first pivotal step, we first decompose A1 1 into its LU factors with pivoting, i.e..

A1 1 = L1UlPl. then replace A12 with L1-'PIAl2.

Wc have to interchange row 1 of U1 with row 1 of A?,], then eliminate u1 1 and a41 with

a31 as the pivot, the resultant is as follows:

9

We have to interchange tow 2 with row 2 of A21, and eliminate u12 and u22 with a42 as a

pivot, the resultant is:

After the first block pivotal step, the disk storage should be as follows:

Multipliers and

(In the formal description of our algorithm, we shall write LlFlA12 as U12, and the disk

record that stores the multipliers and pivoting information as indicated in the previour

diagram L 7 L l.)

The following is a formal description of Algorithm I:

Algorithm I
Let A be an n x n block system

b i = 1 step 1 until n do

For j = i step 1 until n d o

Read 4j into core

Fqr k = 1 step 1 until i-1 do

Read Ljk, uk j into core

by repeating the row operations done to

If there is row interchanging betvrePn [;I, rewrite uk j on disk.

10

Enddo
if j=i

%i = L.U*p. I I 1

Aij' 1 I J

Else
L.'lP,4.

Endif

RewriteAij on disk (rename $j 3s U,
Enddo

For j = 1 step 1 until n d o

Read Aij into core
For k = 1 step 1 until i - 1 d o

Read Ljk, uk i into core

Modify by repeating the row operatioils done to

If there is row interchanging between

Enddo
Eliminate Aji from [;J with row interchanging if necessary.

Store multipliers and pivoting information as L,i on disk.

Enddo

Enddo

Repeat the same row operation to the right-hand side. and solve for x by backward . a b -

stitutir?.

Not\ :

1 . 11 L L I ~ is no interblock pivoting, it requires two disk read/write's in the innermost

do-loop; otherwise, it requires three.
Nowhere in the algorithm do we assume non-zeros in the diagonal blocks. Although

nonzeros in the fins1 upper triangular form will indicate matrix singularity, and back-

ward substitution will be impossible to carry out.

2 .

11

Now we shall show how the algonrhm can b- modified for a block-profile system.

Defrne an n x n matrix K such that:

K(i. j)= 0 indicates the (i, j)block is a zero block

K(i. j\f 0 indicates K(b j)is the location of the (i, j)block (a nonzero block) on disk.

For example, for the following block-profde matrix,

Where the shaded area indicates the nonzero blocks, its corresponding K matrix can be

.2
3
4
6
10

5
7 8

-

9
11
-

We call the K matrix the profile matrix of the matrix A.

In subroutine ETCGP, we scan the profile matrix to determine the beginning and end of
each block row and block column, and change the “ends” the do-loops in the algorithu

accordingly. To h..iidle the “jill-in ?”of the zero blocks (Le., if the (i, j)block is originally

a zero block. but the reduction process turns it into a nonzero block), we find the maximum

entry of the original K matrix, rn, &.id set K(i, j)= m + 1, update m by adding 1 to it, and

revise the information on the beginnings and ends of the i-th block row and j-th block

colump if necessary.

4.2 RLMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM I

1. Storage of the multiplieis and pivoting information

Suppose the i, j biock is a nonzero block that is nix”,, and i>j. The number of words

in its corresponding record on disk is 2*(ni*n,)+nj+l Before the j-th block pivotal step. the

first 2*(ni*nj) words stored the entries of the (i j) block, and the last n4-l words are zeros.

After the j-th block pivotal step, the first 2*(n;*n,) words store the multipliers used, and

the last nj t l words store the pivoting information. We can consider this record as consist-

J

12

ing of two stparate arrays: an array of complex numbers, A(n..n.), and an array of integers.

I(nj+l). In tlie 2 x I hluck system we used to illustrdte the threshold pivoting discussion.

after the first pivotal step. the (2.11 block offre 6.. that is A?!. & is stored as an a m y of
coniples nutiihen. A(2.3). (LS

1 1

and the pivotal infomiation is stored in the integer a m y . l(3). as

The two arrays arc packed as one record on disk.

L he matrix A stores tlie actud niultiplien used in tlie reduction process. I(1)=I indicates

the lint row of A- I interchanged with row 1 of the upper triangular matrix U l before the

first column of A, 1 is t.liniinat.-d. I(3)=3 indicates tile second row of A, 1 interchanged with

row 2 o f U before the second column of A? - 1 is eliminated. 1(3)=1(I)+I(2)X indicates

there is interblock pivoting between the lirst block row (the pivotal hlock row) and the

second hloc*k row. If there is no interblock pivoting in this step. I (I PO. and 1(2)=0. thus

1(3)=0. A s i t is ohvit .IS f rom this example. I(k)=O indicates tki t no row interd1iinge is

needcd to eliniin~te the k-th column of the (i.j)block. l (k)=n iX indic;itrs t1i;it the i n - t h

row o f the (i j, hlock is iiitercl1:ingc~d with the k-th row o f the corresponding uppcr triang-

uh r niatrix [I . Iwfore tlic A - t h colutiin of tlic (i. i)Moc.k is eliminrlted, :ind

I(nj+I)=I(I HI(2)t . . .+l(n.). It' I(njt i)=O, it indiccitcs tli.it tlierc is no i*iterhlock pivoting

Iwtwceii tlic i-111 mid i-111 rows: if I(n.+l)>O.it in1iic;ites that there is interldock pivoting

hetwc.cn tlic i-111 ;itid j-th hlock row.

-
- -

.I

.I

J

13

In subroutine ETCCP, this operation is camed out by a Compass subroutine CCSMAB
which is about five times faster than straight FORTRAN. Even if there is interblock row

pivoting, we still can take advantage of CCSMAB. Consider the situation in the innermost

do-loop in the description of Algorithm 1. We have the following blocks in core:

If there is no pivoting between the i-th and j-th block row, the operation can he repre-
sented by the following equation:

where L is such that

If there 1s pivoting betwecn the i-th and j-th block rum. then the operation can be repre-

sented hy the following equation:

where P is that permutation matrix that interchanges the rows and Lis such that

14

The re fore

Also writ?

The re fore

A h
-rhus in ETCGP. we compute ukj = L ~ - ~ U ~ ~ then use CCSMAB to compute - MU^^ .

Note that M is just the lower block o f P and can be eoniputed quite efficiently by

forward substitution. (The following describe the cornpution M and U = L , - I u k j -
M would ovcrwritt' Lik. and U would over write Ukj. We shall call Gk. M and Ukj. U and

the x t u a l row and column dimension o f U, NR. and NC.)

For ni=2 stcp 1 until NK d o

If I f 111

k=lr 111

For h=l step 1 itntil NC do

I ~ I I ~ . 11) = U(ni, h) -
ni - 1

s = I
MOi. si*U@. I!

1;. nJJ0

15

For h=l step 1 until m-1 do

M(k.h)=o
Enddo

Else
(no operation)

Endif

Enddo

3. Pivotal Tolerance

At this point, we cannot give any theoretical guidarrci on the choice of the pivotal tolerance

p. Experimaentdly, p = 0.001 proves to be satisfactory. In ETCGP, we store p in a labelled

common block

COMMON/ETPIVOT/U
and U is set t o 0.001 by at DATA statement. c‘he use; can reset the value of U by any ex-

ecutable statement before calling ETCICP.

4. Monitoring of Stability

ETCCP keeps track of the ‘&nvfh”of the reduction process (which is the largest absolute

value of all the numbers generated by the reductic I process). Our motivation for keeping

track of the growth is explained in section 4.3.

ETCGP also generates an extra right-hand side row *.vhic:h is the row sum of the coefficient

matrix A. It subtracts (1 .O.O) from each element in the solution of tb J extra right-hand side.

The resultant gives some indication of the “smul1ness”of the residue Ax-b of the actual

problem.

4.3 NUMERICAL STABILITY OF ALGORITHM I

Reid (ref. 9) and Wilkinson (ref. IO) have analyzed the stability of the .kular Gaussian

elimination. If L and U are respectively computed lower and u y ? i ~riangular factors of A.

the A. L and U are related asfollows:

A = L U + E

I J
with E=(e.. .)and IepjlQ 3.01 *m* E %
where m is the order of A, and E is the machine pr. -ison. (:n CDC eqiiip:.ient, c =

g is the growth of the reduction process.

Reid and Wilkinson analysis cannot he extended in any obvious iiiaiiner to give a pmctical

hound for E for Algoritlini I of this document. The best we can do at present is the

I'i, i ui. n

Aj,i Aj, i+ I Aj. n

Ui, i + I . . ~. . . . , .

L

wlierc Mi is the matrix that performs the ith block pivotd step

E . = I (rkli) leklil Q 3.01 * E * gi with gi being the growth of

thc tist i t h block pivotal step.

The main difficulty is due to tlir fact that we d o not use the same pivots for eliiiiinatirig

tlic sul.rciiagona1 elements in the sanie column. Thus
hlI-'M--'. . . M['l$ * E, for i = 1. 2 , M

whilst equ;ility lioltls for the above expression in the regular Gaussian elimination. However
c'acli block pivotal step the process of eliniinating the lower triangular eleinents of ji. from

Ai. n

anti the process of rliniination Aj, ifrorii

for i < j < 11 are regular Gaussian elimination. Thus the "grorcvtli * ' of Algorithm 1 at least
gives the local stahitit) of t l i c w substeps. The norni of tlie difference o f the computed solu-

tion from the actual soltition give a realistic boilmi for the norm of E, because the sclual

solution \ satisties tlic equation A s = I.. tlie computed solution y satisties t'w rqiirition
(.A + 1i)y =h.

~l'llUS

A s = (A + I3y

t i f .\ = 1:y

17

4.4 COMPARISON OF ALGORITHM I WITH OTHER APPROACHES

13jorc.k and Dahlquist (ref. b) and Keid (ref. 8) have proposed apprortclies to the problr!n 0 1

solutions of large dense linear systems. BjorcA and Dalilquist's approach follows.
The iiiatril is partitioned in to block rows:

with the requirement that a miiliniuni of two block rows cm be held in core simultaneously.
The tifit b l o ~ k pivotal step c:~n be described as follows:

I . Kttaii into core anti retilice it to wit11 regtitar Gaussian elimination.

2. For j=2.3. . ..n r e d A. into core reduce
J

to

witti row-intcrcli;ingrs bvhen nccessary. and write A; back onto disk.

18

eliminated elements by multipliers and using row interchanges. Note that for i > 3
the modified block A1 1 is upper triangular and advantage may be taken of this.

2. For j=2.3. . .n read in blocks (iy) modify tliem using the multipliers and interchanges

held in (:(:) and then write them back to disk.

3.
The remaining block pivotal steps are performed similarly. Operations on the right-hand

side vector may be performed subsequently using the stored multipliers or at the same

time as the elimination.

Write modified block $1 to disk.

Approaches Features

Dahlquist

and Bjorck

two block rows are needed in core

Reid four blocks are needed in core

four disk read/write's in the

inner most do-loop

Algorithm I

(without pivot-

three blocks are needed in core

t.. 3 disk read/write's in the

in& inn most do-loop

Algorithm I

(with the worst most do-loop
possible case of
pivoting)

three disk readlwrite in the inner

Reid has proved that given the same amount of core, the block row storage scheme is only
efficient for matrices of order of less than 300. For large matrices, Algorithm I requires the

least amount of disk input/output. The following table summarizes the features of the three

approaches.

No. of
disk access

4 m
4-
N*

* rn IS the order of the matrix, and N is one half of the number of words
available in core.

19

4.5 ALCORlTHM 11 (SUBROUTINE ETCSM)

Algorithm 11 is designed for coefficient matrix with a special sparsity structure: * x x
x x x

A = [;;:;;] x x x x x

x x

We can write A = B + D where B is a banded matrix:

B =

D = X
X
x x
x x
x x
x x

*The x’s are single elements

20

T D can be written as D = UVT, where U and V are as follows:

u =

x x

o o l o o o c J O O

O O O O l O O O O Q VT= [I

Thus to solve a x = b, we apply the Sherman-Morrison updating formula

The algorithm I1 can be described as follows:

1.

2.
Reduce B to an upper triangular matrix with Algorithm I.
Repeat the row operation in 1 to [blU]. Solve for B [z,y] = [b,U] by backward
substitution.

Conipute [S,Tl = VT [z,y].

Decompose (I+T) into its LU factors with row interchanging.

Solve for w in the equation (I-T) w=S by forward and substitution.

3.
4.

5 .

6. Comnute x=S-T*x.

21

4.6 REMARKS ON FORTRAN IMPLEMENTATION OF ALGORITHM I1

In this section, we shall use the notation we have defined so far

1.

We partitioned U comformable to the partitioning of the coefficicnt matrix A:

Storage of U and V

and store them on disk in the same block which stores the corresponding partition of the

right-hand side.

Since the matrix V only consists of ones and zeros, we d o not store V explicitly.

We use two-dimensional array:

INTEGER N(MR,MC)

where MR 2 the number of Flock cchmns that contain element columns in the matrix

D=UVT, and MC > 2 + the total number of columns in the matrix U. The contents of N are

defined as follows:

Let i 1 .iz.. . . . be the indices of the blocks that contains columns of D, and then

N(1.1)=il

N(2.1)=iq -

22

i

Suppose for j=1,2. . . all (ij,m) blocks for some m > kj contain the nonzero elements of
D, then

N(1,2)=k 1

N(2,2)=k2

It is important that N(j,n(j)+3) be set to zero, so that the program know the mj,nu) is the

last column from the ij-th block column to go into D. The following 3 x 3 block system

will illustrate our scheme:

A =

23

D = c ; ; x x x x ;
x x

1
-j

N(1 , l) = I meaning the first block column contains columns for D
N(2,1)=2 meaning the se,;ond block column contains columns for D
N(1,2)=2 meaning in the first block column, only (m,l),m 2 2 contains columns for D
N(2,2)=3 meaning in the second block column, only (m.2),m >3, contains columns for D
N(1,2)=3,N(1,4)=5,N(1,5)=0 meaning only the third and fifth columns of the first block

column belongs to D
N(2,3)=3,N(2,4)=0 meacing only the third column of the second block column belongs

to D

2. Computation of VT(z,y) (Step 3 of Algorithm 11)

Since V is not storc d explicityly, we use the following:

(Let NB be the number of block columns that contain cci.imn of D, L be the total number

of nonzero columns of D, and the two-dimensional array N, is as defined as before, and

NC=L+number of right-hand sides.)

g= 1
For 1 = 1 step 1 until NB do

k=N(i, 1)
Read Tk=bk.Uk into core

Forj=3 step 1 until LU+2 do

m=N(i, j)

If m=O, then exit do-loop with index j

24

Otherwise

S(S,h)=Tk(ln b)
Enddo

g=g+ 1

Enddo

Note that the array S contains vT(z,y)

4.7 NUMERICAL STABILITY OF ALGORITHM I1

Suppose A and B are matrices of order n and are related in the following manner:

A = B + W T

v here U at;d V are nxr mtr ices with r -51, and both U and $' are of rank r. Then it follows

from a variant of the well known Sherman-Morrison formula (ref. 6) that

where 1, is the identity matrix of order r. Assume B is well-conditioned and has been

decomposed into LU factors B=LU, then equation (3) prcvides a very efficient method to
solve the linear system

Ax = b.

However, a general concern when using equation (3) is that the matrix 1, +VTB-'U)

may be ill-condiiioned. In this section, we prove a sufficient condition for the vpell condi-

tioning of (I,+vTB-~c)

(

Before we proceed, we state the usually accepted definition of the condition number of a

matrix and an inequality related to it.

(4)

Let A be an nxm, n k n . matrix with linearly independeat columns, then the conditional

number of A, denoted by k(A) is such that max. IlAxll

min. II Ax11
llxll= 1

llxll= 1

k(A) =

25

It is also true that

k(A) 2 llAll2 *lh+11,
where A+ = (ATA)-'AT , the generalized inverse of A.

Let R(A) be the nnge of A. Inequality (5) is obvious from the fact that:

Further, if A is nonsingular, equality will hold.

k e now prove r r~ t following:

Theorem 1. If A and B m- related as in equation (2), and A and B are invertible, then

(I - VTB-~U) = U+AB-+J

(I - vTB-~u) = VTB-~A (vT) +

(6)

(1)

where U' = (U'U) -'UT , and (VT)+ = V (V'V)

gtrierdlized inverszs of U and V, respectively.

are the

Proof: Note
A = B-UVT

= (In - UVTB-*) B

:. AB-IU = (U - UVTKIU)

:. AB-IU = (ur - V W U)

:. (I, - V T B - ~ u) = U+AB-IU

Thus we have proved the validity of equation (6). The proof of equation (7) is simila

26

The following equations are direct derivations from equations (6) and (7):

(I - v ~ B - l u) - ~ = u + BA-IU (8)

(I - VTB-]U) = VTA-'B (VT) + (9)

Combining equations ((6). (71, (8). and (9) with the fact that

for any two matrices C and D.
IlCDII, Q IlCllzllDII,

k (1 - V T B - I U) < min. (P1,92 ,931 k (A) k(B). (10)

Inequality (10) states that if A and B are well-conditioned, and either U or V is well-conditioned
then I + V T I B- U is well-conditioned.

computed quite econoniically and the physical problems that yield matrices A and B usually
give some indication of their vell-conditionin_g. The well-ccinditioning of B and

r'nsures that the solutions of B~ = b
0

By = 11

(1 + VTB-'U)Z = VTxo

can be computed with satisfactory accuracy. Thus the solution of Ax=b via equation (3)
can be computed with satisfactory accuricy (1 I) .

I n our particular application of the Sherman-Morrison updating formula. V T V is a permu-

tation matrix, thus

timed. Algorithm 11 is u l w u ~ ~ s stable.
llv+l!;. llvll7 = 1 . Therefore as long as A and B are both wellcondi- -

27

5.0 COMPUTER PROGRAM USAGE

5.1 MACHINE AND EXECUTION ENVIRONMENT

The alporithms described in the previous section are programmed zs a FORTRAN sub-

routine library (which we call OCSLIB out-ofcore solution library). The subroutines are

written for the FTN compiler of the CDC computers.

5.2 OPERATING SY =EM

This subroutine iibr-ry is designed for NOS 1 . I . Its compass subroutines are optimized for
the CDC 6600.

5.3 TlMING

Tiniing is hardware and operating system dependent. l 3 e following formula gives a very

rough estimate for the timing:
3 CP second = 1/2 * n * pc* k

where n is the order of the linear system. and p is the band-width and k is machine-

dependent. To estimate k. make a sample run and compute k using the abovc formula.

For the Cyber 175. k 2 8 x lo-?

5.4 FILES AND FILE FORMAT

OCSLIB tisrs at least one randoni access file. OCSLIB has each block of the coefficient

matri \ as a record. If the block is ni x nj. then the record length is 2*ni*nj + nj + 1 .

5.5 VSAGE

5.5.1 USING ALGORITHM I (SUBROUTlNE ETCGP)

We recommend the following precedure:

Stcp I . Dctine the block system of the coefficient matrix: choose a sequence of p~sitive

28

integers n

I .O. so that the block Akjis ni s n-. The partition is to be chosen so that at least three

blocks can be held in core simultaneously.

n 1, . . . IIN to partition the matrix into a block system like fig. 1 of section -
1

Step 2. Define the block profile of the matrix: define an array

ISTERGER INDEX (M.M+I)

such 'hat hlB N, and INDEX(i, jF0 if the Ai. is a zero block.
INDES(i.jO0 if the Ai. -has at least one nonzero entries. J

thew we consider bk=Ai N + I . for k l . 2 N)

Step 2. H'rite the auguniented mistris on disk for ETCGP.nk (k=l.2. . - . N) at a time.
In this step we provide 3 subroutine ETBhKiEN to write a block row of the augmented
matrix on disk in CL format that is acceptable by ETCGP. Thus we shall describe the usage

and argument list of ETBMGEN.

COhl PLE X W(M XK ,M XC)
INTECE R INDEX(MT.MT+ I hJN(NT2).NDBLK(NTI) (where NT I>NTBLKS+I

NT2XiiBLKS**2 + NTBLKS+3)

DO 10 I= I . KTBLES
(Code to generate the i-th block row of tile augmented matrix.)
CALL ETBMG EN(I .NTAPE, IN .~lT.NTBLKS.WORK.MXRil.YC)

10 CONTINUE

29

Tlir argument list for ETBMCEN is described ;is follows:

C
C
C
C
C
C
i
C
C
C

C
C
C
C
C
C

C
C
C
C
C
C
C

L

PUR-OS- TO URITE THE WON-ZERO BLOCKS JF A BLOCK ROW OF M A T R I X
I N ETCGP FORMA1

ARSUn€N' L I S 1

1 - BLOC* ROW INDEX
NTAPE - OUTPUT D I S K F I L E

OUTPUT - ARCMENTED MATRIX I N ETCCP FORMlT
INDEX - 2 DIMENSIONAL ARRLY FOR THE PROFILE OF fH€ MATRIX

ROY DIMENSION MTr COLUMN DIMENSION = MI+I
I N O E X l I r J) = O (I * J) - I H BLOCK IS ZERO
INDEXlI.J)&T.O LDCATION OF (I.J)-TH BLOCK ON NTAPE

-!r - aoW OIMENSIW OF THE ARRAY INDEX
JN - INT€GER ARRAY FOR THE RANOOM ACCESS F I L E NTAPEI AT LEAST

NTBLKS - NO. OF BLOCK ROUS
NDBLK - ARRAY TO STORE BLOCK S I Z E S . N D B L K ~ k f 8 L K S + 1 ~ ~ N O ~ O F RHS
M R K - (2 OIMENSIGNAL TO USER)

NXR - ROW G1MENSIC)N O f YORk
MXC - COLUMN OIMENSION OF UORK

l N I B L K S ~ T B L K S * N T B L K S * 3) MANY YORD'. LONG

INPUT ARRAY FOR THE NON-ZERO BLOCKS OF THE I-TH BLOCK ROW

MUTE SU3ROUTINF. ETCGP ASSUHES ALL '1M NON-ZEROBLOCKS TO BE
DENSE BI 'LKS. (SEE THE SAMPLE CALLING PROGRAM)

ETBMCEN alters tile contents of the array INDEX.

Step 4. To solve the h e a r svstem via ETCCP
COMPLEX WORK (LW)
INTEGER INDEX(MT.MT.+I).NDBLK(NT!)

CALL E1'C~P(NTAPE.INDE)<.NTBL~S.NDBLK.WORK.LW,ITAG)
The calling sequence of ETCCP is 3s follows:

SUB ROUT IN E ETCGP(NTAPE .INDEX.NDB LKS.NL)BLK . WORK .LWORK .ITAG

30

SU6ROUTINE ETCGPtNTAPE~IND€X~NTbLKS~NDBLKIWDRKlLWDRK~ITAG)
OYTIONIKEEP=€IFF~ I N L I S T = M I

C********LC**
C
C PURPOSE M A I N SUBROUTINE
C REOUCE MATRIX TO AN UPPER TRIAGULAR MATRIX - C A L L ETCGPRM
C REPEAT ROU OPERATION O N RHS - CALL ETCGPFS
C 8ACKWARD SURST ITUT I O N - CALL E T C C W S
C
C ARGUMENT L I S T
C NTAPE - INPUT/WTPUT D I S K F I L E S FOR MATRIX
C INPUT - C R I G I N A L ARGMENTED MATRIX
C OUTPUT - ROI) OPERATIONS PERFORMED AN0 UPPER
C TRIANGULAR FORM AND SOLUTIOY
c I N D E X - 2 D I M E N S I W A L ARRAY FOR THE PROFILE OF THE M A T R I X
L ROW DIMENSION = NTBLKSv COLUMN DIWENSION = N T B L K S + l
C I N D E X t I r J) = O I I * J t - T H BLOCK I S ZERO
C INDEX(I tJ) .GT.O L O C A T I 3 N OF t I v J) - T H BLOCK ON NfAPE

C NDdLK - ARRAY TO STORE BLOCK SIZES.NDBLK~NTBLKS+l) t lO,OF RHS

C LWORK - LENGTH OF THE ARRAV WOaK REGARDED AS COMPLEX
C LY0RK.G. tUTBLKS**Z + P N T B L K S + 3*MXB + 3*N)

C MAXIMUM OF A L L THE ENTRIES OF THE ARRAV NOBLKI AND WHERE

N I B L K S - NO. OF BLOCK ROWS

c noqu - I-JORKIW ARRAY (COMPLEX TO USER)

C HHERE MXB = (MXBLK**Z) + (MXBLK+t) /Z W I T H MXBLK = THE

C hl 13 THE ORDER OF THE SYSTEM
C I T A 6 - CLIMPUTATIONAL PATH
C I T A G = l REDUCE MATRIX TO UPPER TRIANGULAR FORM AN0
C SOLVE AX=B
C ITAG.2 REDUCE MATRIX ONLY
C ITAG=3 SOLVE AX=B ASSUMING A HAS BEEN REDUCED
C
C********************~*~~****++************************

(The array WORK should be equivalenced to the arrays W and JN as follows:
EQUIVALENCE (WORK,W) (WW(1 .MXC+l),JN)

Step 5 .

ETRDSOL which has exactly the same calling sequence as ETBMGEN. Its usage is described

below:

Read the solution from NTAPE. In this subroutine we provide a subroutine

DO 10 I= 1 ,NTBLKS

CALL ETRDSOL(NTAPE .INDEX,MT,NTBLK ,W ,MXR@XC)
(code to process the part of the solution corresponding to the i-th block row)

10 CONTINUE

31

5.5.2 USING AUORlTHM 11 (SUBROUTINE ETCSM)

We recommend the following procedure:

Step 1 . Same as step 1 of section 5.5.1.

Step 2. Same as step 2 of section 5.5.1, except call subroutine ETSMGEN
instead of ETBMGEN. The argument list of ETSMGEN is as follows:

SUBROUTINE E T S P I G E N (I r N T 4 Y E ~ I N D E X r M T ~ J N r N T B L K S ~ ~ B L K ~ W R K ~
I MXRIMXCI NBt MLB r LB r LU 1

C
c *************************#***********1**********+*~***
C
C PURPOSE WRITE THE MATRIX I N A FORM ACCEPTABLE B Y ETCSH
C
C ARGUMENT L I S T
C 1 NT AP E s I NO€ XI MTs JNr NTBLKS r NOBLK r WORK* MXRr WXC - SEE SUBROUTINE
C E TBnGEN
C N @ r M L R * L B e L U G I V E THE SPARSITY STRUCTURE OF THE MATRIX 0
C NB - DIMENSIONEO AS
C INTEGER NB l MLB , LU+ 2 1
C N B (I r l) = K v T t E K-TH @LOCK R 3 W CONTAINS THE COLUMNS OF 0
C N B (I r Z) = J r ONLY THE BLOCKS IWsK).M.CE.J CONTAINS THE C0LUM)S

C FOR T r G E . 3 r N B t I r T) = S r THL S-COLUMNS OF THE K-TH BLOCK COLUMN

C THEN SET N B (f r H + Z) = O

C OF C

C I S I N 0. I f 0 ONLY CONTAINS H COLUMNS OF THE I(-TH @LOCK COLUMN

C MLB - RIJW DIMENSION OF NB
C L B - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF D
C LU - TUTAL NO. OF NON-ZERO COLUMNS OF D
C
c .

Step 3. Solve the linear system via ETCSM. The argument list of JTCSM is as follows:

SUBROUTINE ETCSW~NTAPErINOEXrNTBLKSrNDB'.KrWORKrLWORK~ITAG~

.
C
C PURPOSE APPLY THE StERHAN-MORRISON UPDATING FORMULA TO SOLVE
C IBE+D)X=Br WHERE BE I S & BLOCKEO BENDED MATRIX.

SKNBr MLR. LB r LU)

C A N 0 0 ONLY CONSISTS OF A FEW COLUMNS OF NON-ZEROES.
C THE NON-ZERO COLUMNS GF 0 IS ASSUMED TO BE STORE0 W I T H 1HE RHS.
C
C ARGUMENT L I S T
C NTAPErINOEXrNTBLKSrNOBLKrUORKrLWORK - SEE SUBROUTINE ETCGP
C I T A G - THE VALUE OF I T A G I S PASSE0 ON TO ETCGP
C K N B * M L B * L B * L U G I V E THE SPARSITY STRUCTURE OF THE MATRIX 0
C KNB - D I M E N S I W E D AS
C INTEGER KNBt MLB rLU+2)

C K N B I I * Z) f J * ONLY THE BLOCKS (MrK)rM.CE.J CONTAINS THE COLUMNS
C KNBII~I)=K* THE K-TH a L o c K ROY LONTAINS THE COLUMNS OF o
C OF 0
c FOR T.GE.3r K N B (I * T) x S r THE S-COLUMNS OF THE K-TH BLOCK COLUMN

C THEN SET KNB I I r H + 2 =O
C MLB - ROW DIMENSION OF KNB
C L B - TOTAL NO. OF BLOCK COLUMNS THAT CONTAINS COLUMNS OF 0
C L U - TOTAL NO. OF NO#-ZERO COLUMNS OF 0
C
C*******C****t+**

C IS IN D. IF D ONLY CONTAINS H cmuws OF THE K-TH BLOCK COLUMN

32

5.5.3 USING THE ITERATIVE REFINEMENT SUBROUTINE (ETCIT)

ETCIT requires the original matrix and the output matrix from TECGP to be in different

files. The usage of ETCIT is obvious from the explanation of its argument list:

SUBROUTINE
SWORKrLWORK)

ETC I T t N TAPE I 9 I N D E X I * NT APE0 p I NOEXO rNDBLK9 NTBLK S i

C***#**************S*t*t***+L+t,***********~***************~**

C
C PURPOSE I T E R A T I V E REFINEMENT
C
C ARGUMENT L1 ST
C NTAPEI - INPUT D I S K F I L E STORES O R I G I N A L MATRIX
C I N O E X I - 2 DIMENSIONAL ARRAY FOR THE PROFILE OF THE MATRIX I N
C N T A P E I (SEE EXPLANATION FOR THE ARGUMENT INDEX I N
C SUBROUTINE ETCGPl
C NTAPEO - OUTPUT DISK F I L E FROM ETCGP. STORES THE UPPER TRIANGULAR FORM
C AND THE ROY OPERATIONS PERFORMED BV ETCGPi ALSO THE
C SOLUTION FROM ETCGP.
C THE F I N A L SOLUTION FROM E T C I T WILL OVERWRITES THE SOLUTION
C FROM ETCGP.
C I N D E X 0 - 2 DIMENSII3hlAL ARRAY FOR THE P R O F I L E OF THE MATRIX I N
C NTAPEO (SEE EXPLANATION FOR THE ARGUMENT I N D E X I N
C SUBROUTINE ETCGP)
C NTBLKS - NO. OF BLOCK ROUS
C NOBLK - ARRAY TO STORE BLOCK SI ZES~NDBLK(NTBLKS+l)~NO.OF RHS
C WORK - WORKING ARRAY lCOMPLEX TO USER)
C LWORK - LENGTH OF THE ARRAY WORK REGARDED AS COMPLEX

C W E R E MXB = IMXBLK**Z) + tMXBLK+2) /2 WITH MXBLK = THE

C N IS THE ORDER OF THE SVSTEM
C ~**#*****~#**

C LWORK.GE. (NTBLKS**Z + 3*NTBLKS + 3*MXB + 3*N)

C MAXIMUM OF ALL THE ENTRIES OF THE ARRAV NDBLK~ AND WHERE

33

5.6 ERROR MESSAGES

5.6.1 ERROR MESSAGES FROM ETCGP

1 . X’ORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE

.U’EEDED RETURN FROM ETCCP.

2. WRONG CHOICE O F COMPUTATION PATH, ITAG SHOULD EQUAL TO 1,2 OR 3.

3. MATRIX SEEMED SLNGULAR, EXIT FROM ETCGP.

5.6.2 ERROR MESSAGES FROM ETCSM

1. WORKANG SPACE TOO SMALL, AT LEAST ************* WORDS ARE

NEEDED RETURN FROM ETCSM.

2. MATRIX SEEMED SINGULAR, EXIT FROM ETCSM.

5.6.3 ERROR MESSACES FROM ETCIT

1. WORKING SPACE TOO SMALL, AT LEAST ************* WORDS ARE

NEEDED RETURN FROM ETCIT.

2. CONVERGENCE TOO SLOW, RETURN FROM ETCIT.

34

5.7 SAMPLE PROBLEMS

5.7.1 SAMPLE PROBLEM 1

(3
C
C

C
C
C

C
C
C

3

PROGRAM TGP(IhrPUT,OUTPUT, TAPES=IKPUT, TAPEd=OUTPUT, TAPE8

THIS PROGRAM ILLCSTRATES THE USE OF ETCGP.
THE PROFILE O F THE HTRSX I S BLOCK TRSADIAGONAL.
THE SUBBU)CKS ARE 2 X 2 BLOCKS.
WE CALL THE RANDON NUMBER GENERATOR To GENERATE THE MATRIX ENTRIE
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.

NOTE THE W ARRAY SHOULD BE EQUIVALENCED To WW
AND J N SHOULD BE EQUIVALENCED TD WW(l,MXC+l)

DATA KN/l lO*O/ , W/lOOO* (O., 0.) /
DATA NTBLKS/5/,h;DBLK/2,2,2,2,2,1/

EQUIVALENCE (WW, W) , (KN, I N) (JN, WW(1,12))

MITE T H i W ARRAY SHOULD BE EWIVALENCED 'M WW
AND Jh SHOULD BE EUUIVALENCED To WW(l,MXCtl)

DATA
EQUIVALENCE (w, W) 8 (Kh, I fi) (Jh, WW(1 , 1 2))

GEhERATE IhiDEX ARRAY I N Iti

NT1 =&TBLKS
hiT1 =NTLBKS+l
hiTM 1 =NTBLKS- 1

I N (1 , 2) = 2
Ihi(1 , l) =l

I N (1 , h T l) =3
NS=3
Do31 =2, NTM1

I N (I , I) = N S * 2
I hi(I , I t1) =hS+3
I N (I , N T l) = N S + 4
kS=PjS+4
CO kTI NUE
IN(NTBLKS, k(iTM1) = N S + ~
IEr(NTBLKS, NTBLKS) =NS+2
I hi(hTBLKS, EjTl) =hS+3
hiS=NS+3

I N (I , I - l) = N S * I

35

C
C
C

C

C
G

C
C

C
C
C

C
C

C

C
C
C

C

C

C
C
C

4

100

6

10

11
101

FIND OUT HOW MANY WN-ZERO COLUMNS I N THE BUCK ROW

DO41 =I, IUTBLKS

DO4J=1 NTBLKS
IF (IN(I, J) . GT. 0) NC(I) =NC (I) *NDBLK(J)

NC(I =O

WRITE(6,lOO) ((ZN(1, J)
FORMAT(*IhDEX ARRAY IN #*,/, (1 1 1 5))

Jtl, 1 1) ,I=l, 1 0)

GENERATE NTBLKS BLOCK ROW OF THE MATRIX

DO1 OX ~ 1 , NTBLKS
NCl =kC(I) +l

GENERATE NC(I)*20 RANDOM rVUMBERS
CALL NoGEhi(W,NC(I)*20)

ZERO OUT WW(. ,NCl)FOR ROW SUM

hiD=NDBLK (I)

COMPUTE iZOW SUM
MC=NC(I)

WRITE I-TH BLOCK ROW FOR ETCGP

CALL ETBMGEh (I, 8 , I k, 10, JN, NTBLKS, NDBLK, WW, 1 0 , l l)

CO NTI NUE

CALL ETCGP(B,IN,NTBLKS,Nl?BLK,W,lOOO,l)

TO RED SOLLTIOhi FROF! TAPE8

36

5 . 7 . 2 SAMPLE PROBLEM 2'

C
C
C

C
C
C

PROGRAM TSM(INPUT,OUTPUT, TAPEStINPUT, TAF%6=OUTFWT, TAPE8)

THIS PROGRAM ILLUSTRATES THE USE OF ETCSM.

BLOCK TRIDIANGONAC, AND D ONLY CONSISTS OF 2 NON-ZERO ROWS.
THE SUBBLOCKS ARE 2 X 2 BLOCKS.
WE CALL THE RANDOM NUMBER GENERATOR TO GENERATE THE MATRIX ENTRIES
WE USE THE ROW SUM OF THE MATRIX AS OUR RHS.

THE PROFILE OF THE MATRIX IS OF THE FORM AsB+D, WHERE B I S

COMPLEX W (1 0 0 0) , WW(1 0 , 1 0 0)
INTEGER I N (1 0 , l l) , NDBLK(11 1, JN(11 51, KN(1 1 0) , NC(l o) , NB(2,5)

NOTE THE W ARRAY SHOULD BE EQUIVALENCED To WW
AND J N SHOULD BE EQUIVAZlENCED 'ID WW(l,MXC+l)
EQUIVALENCE (W, W) , (Kh;, I N) , (JN, WW(1,121
DATA K N / l l O O/, W / l OOO* (0. , 0 .) /
DATA NTBLKS/S/, NDBLK/2, 2 , 2 , 2 , 2 , 1 /

GENERATE INDEX ARRAY I N I N

NT1 =NPBLKS
NT1 =NTBLKS+l

I N (1,ll =l
I N (1 , 2) =2
I N (1, NT1) =3
NS=3
DO31 =2, NTMl

I N (1 , I) =NS*2
I N (I , I * l) = N S + 3
IN(I , N T ~) =NSM
NS=hiS*4

3 CONTINUE
I N (NTBLKS, N T M l) =NS 1
I N (NTBLKS, NTBLKS) =hlS+Z
I N (NTBLKS, NT1) =NS+3
NS=NS*3

N T M l = NTBLKS-1

I N (I , I - 1) = N S + 1

C
DO51 "4, NTBLKS
N S = NS *1

5 I N (I , Z) = N S
C
C
C

C

C
C

DEFINE THE STRUCTURE OF D

NB(1,l) =2
NB(1 , 2) =4
NB(1,3) =1
N B (1 , 4) = 2

kB(1,5) =O
FIND OUT H O W MANY NON-ZERO COLUMNS I N THE BLOCK ROW

37

C

C
C

C
C

C
C
C

C
C

C

C
C
C

C

C

C
C
C

DO41 4, NTBLKS
NC(I)=O
D04J4, NTBLKS

4 IF (IN(I, J) . GT. 0) NC(I) =NC(I) +NDBLK(J)

WRITE(6,100) ((IN(1, J) ,J=l, 11) ,I=l, 10)

GENERATE NTBLKS BLOCK ROW OF THE MATRIX
100 FORMAT(*INDEX ARRAY INs*,/,(llIS))

DO101 01 , NTBLKS
NCl=NC(I)*l

GENERATE NC(1)*20 RANDOM NUMBERS
CALL NoGEN(W, NC(I) *20)

ZERO OUT WW(,,NCl) FOR ROW 3UM

ND=NDE&K(I)

COMPUTE ROW SUM
HC=NC(f)

WRITE I-% BLOCX ROW FOR ETCGP

CALL ETSMGEN (I # 8, IN, 10, JN, NTBLKS, NDBLK, WW, 10,11 p NB, 2 , 4 2

10 CONTINUE

CALL ETCSM(8,I~,NTBLKS,NDBLK,W,lOOO,l,NB,2,1,2)

TO READ SOLUTION FROM TAPE8

DOlII=:, NTBLKS
C A U ETRDSOL (1,8,1N,lO,JN,NTBLKS,NDBLK,WW~lO,ll)
ND=NDBLK(I)

11 WRITE(6,lOl)I, WW(J, 1; , J=l,ND)
lOlFORMAT(lX,IS,*-TH BLOCK SOLUTION*,, / , (8E10.4))

STOP
END

38

1 .

2.

3.

4.

5 .

6.

7.

8.

9.

Ehlec, F. Edward: ‘ X Finire Difference Method for the Soluticln of the Trairsc+c
Flow Around Harmonically Oscillating Wings.” NASA CR-2257, January 1974.

W-atherill, W. H.; Ehlers, F. E.; Sebastian, J . D.: “Computation of the Trutrsonic
Pertwhation FIo w Fields .dround nvo - and Three-Dimensional Oscillating Wing. ”
NASA CR-2599, December 1075.

Weatherill, W. H.; Sebastian, J. D.; and Ehlers, F. E.: “The Practical Application of a
Finite Difference Method to the Analysis of Transonic Flow Over Oscillating Airfoils
arid b’itigs, ’’ NASA CR-2933, December 1977.

Weatherill, Warren H.; Ehlers, F. Edward; Yip, Elizabeth; and Sebastion, James D.:
“Fwther investigation for Finitt? Difference Procedure for Analyzing the Transonic
Flow About Harmonically Oscillating Airfoils and Witigs. ” NASA CR-3195, 1979.

Weatherill, W. H.; and Ehlers, F. E.: ‘2 User5 Guide for A344 - A Prograr,: Using a
Finite Difference Method to Andyze Transonic Flow Over Oscillating Airfoils, ?’

NASA CR-159141.

Bjorck, A.: Dahlquist, D.: “Numerical Methods. ” Prentice-Hall, Inc. 1974.

Calanm. D. A.: “A Block-Oriented Sparse Equation Solver for the CRA Y-I , ’ * Proceed-
ings bli 1979 International Conference on Parallel Processing. Bellaire, Mich. August
27 to 24, 1979.

Ehlers, F. Edward; Weatherill, Warren H.; Yip, Elizabeth; and Sebastion, James D.:
“An investigation of Several Factors Involved in a Finite Difference Procedure for
Airalyzing the Transonic Flow About Harmonically Oscillating AiTfoils and Wings, ’ I

NASA CR-159143.1979.

Reid, J. K., “A Note on the Stability of Gaussian Elimiiiatioit, ” J . Inst. Math Applics.
(1971) pp. 374-375. _ _

10. Wilkinson, J. H., “The Algebraic Eigenvalue Problem, ” London, Oxford University
Press., 1965.

1 1 . Wilkinson, J. H., ‘Y?oitnding Errors in Algebraic Processes, ” Prenticz-Hall. 1963.

39

I 1
4 lme and Suhtme

FORTRAN Subroutines for Outsf-Core Solutions
of Large Complex Linear Systems

> A d n a t s I

Elizabeth L. Yip

Boeing Co- liercial Airplane Company
P.O.Box ‘07
Seattle, Washington 98 1 24

Langley G a r c h T e n t e r

Washington, D.C. 20546

9 Pertormmq Orgdnrralqm Name ami Anares

2 SPomampA v N m Address

National Aeronautics and Space Administration

0

8 Prtwm,qOlpcliratnon Rcpo.1 ho

B O 2 8 3 -
10 w a k Una? NO

1 I Conr.rr1 ot GIInt-ko

NASI -1 5 128
13 1- ot Repoet m PcioC C v t c r e

Final Report
I4 S g o m a i n p A w v C a * .

(1 4Dr’ract

This document describes the design and usage of two main subprograms using direct
methods to solve large linear complex systems, of the form Ax = b, whose coefficient
matrices are tco large to be stored in core. The first main subprogram is for systems
whose coefticient matrices are of a particular sparse structure. namely. the matrix A can
be written in the form B + D. where B is a block-banded system. and D has only a few
columns of nonzeros. Key elements of the algorithms used in the subprograms include:
the data structure. the strategy for preserving numerical stability, the adaptability of the
algorithms for dense systems as well as for block-profile systems.

I 7 Key Words I S u w e r t ~ by Authorjrt I
upper triangular mLmx
threshold pivoting block-profile matrix
pivotal tolerance biock-banded matrix
rank
Sherman-Morrison Updating Formula

18 Dtrr,thtrrmn Statrmrnr

I9 S r c w i t v Clarrnt in1 thtsreport~

Unclassified
20 Sectrr~rv Clairtt {ot :btrpaqpi 21 No of P q r r 71 Pttrr-

Unclassi tied 39

